BMOW title
Floppy Emu banner

Archive for the 'Yellowstone' Category

Yellowstone Future Forecast Update

Back in April I wrote about the future of Yellowstone, and due to the global semiconductor shortage, the future was not looking bright. The Lattice FPGA at the heart of Yellowstone was out of stock everywhere, with an estimated factory lead time on new chips of an incredible 67 weeks. I predicted that BMOW would exhaust the existing stock of Yellowstone hardware sometime in August or September, and that would be the end.

Since then I’ve been watching Lattice’s estimated lead times, hoping that maybe they’d drop to something half-way normal, but unfortunately it’s gotten even worse. It’s been 19 weeks since that April update, so theoretically the 67 week lead time should now be down to 48 weeks. But as of today the lead time on that chip has actually increased to 79 weeks! Ugh.

The best case is a different Lattice FPGA package variant that currently lists a 53 week lead time, but I no longer trust these numbers at all. I strongly suspect that Lattice’s numbers for this chip family are somewhere between wild-ass guesses and complete fiction. They have no idea when or even if they’ll ever have these chips available again. They’re clearly having major difficulty sorting out their manufacturing capacity and meeting all the demand, so an older inexpensive chip that earns little profit for Lattice is probably at the bottom of their priority list. After two years of unavailability and a prediction of at least one year more, I wouldn’t be surprised if this chip were never available again. They’ll continue to push back the estimated lead times for another year or so, before finally admitting reality and giving the chip End of Life status.

This is all just a long-winded way of saying that the future availability of Yellowstone looks even more doubtful now than it did back in April. The only bright spot (for buyers, not for me) is that sales have been slower than expected, so I expect the existing stock will last longer than my original estimate of August-September. At the present rate, the current stock should last until sometime in the spring of 2023. We’ll keep our fingers crossed that Lattice will have sorted out its manufacturing problems by then.

I’m disappointed of course, but that’s life in this industry. There’s no guarantee that parts will continue to be available forever. Usually you get more of a grace period, and a part is eventually designated Not For New Designs, and finally you get a “last-time buy” notification to stock up before the chip is gone for good. The only answer is to factor the likely future availability of parts into your designs, and be prepared to redesign the product around new parts when existing parts reach end-of-life. That would be theoretically possible here, but it would be a big task and I’m not sure I have the appetite for it. Stay tuned for 2023 and beyond.

Read 4 comments and join the conversation 

Yellowstone Future Forecast

BMOW’s new Yellowstone Universal Disk Controller for Apple II computers has been popular in its first month of release. At the time of its announcement, I warned that parts supply constraints might make this the one and only manufacturing run of Yellowstone cards. That forecast now looks increasingly likely.

Ignoring the burst of Yellowstone sales immediately after its release, and extrapolating from the average daily sales rate more recently, there’s enough stock on hand to last until August or September. Unfortunately the Lattice FPGA at the heart of Yellowstone is out of stock everywhere, due to the global semiconductor shortage that keeps getting worse. The estimated factory lead time on new Lattice FPGAs is an eye-watering 67 weeks. Ouch!

I thought long and hard about placing an order anyway. After all, the sooner I place an order, the sooner I can eventually get the parts. But 67 weeks is a very long time, and that’s just an estimate. I’m not confident that Lattice really has any clue when they’ll be able to resume shipping these parts. It could be never.

Ultimately I decided I’m just not comfortable extending my plans until almost 2024. Will the other required Yellowstone parts still be available then, at prices to make the product viable? Will the product even still make sense to produce, or will it have been obsoleted by something else? Will I still be interested in this line of business in 2024? I’ve already invested money and time securing parts for planned future manufacturing runs of the Floppy Emu disk emulator and the ADB/USB Wombat input converter, expected roughly six months in the future. This already makes me nervous. 67 weeks “estimated” for the Lattice parts is just too much. That would demand making business plans on a cloud and a prayer.

This means when the current Yellowstone stock runs out this summer or fall, there won’t be any more inventory for a long time. I’ll keep an eye on the lead times for Lattice FPGAs and the other required parts. If the situation begins to improve, and it becomes possible to manufacture more Yellowstones with under 30 weeks lead time, I’ll consider jumping back in.

Read 6 comments and join the conversation 

Now Available: Yellowstone Universal Disk Controller for Apple II

It’s finally here! After more than four years in development, I’m pleased to announce that BMOW’s Yellowstone Universal Disk Drive Controller for Apple II is available and shipping now. Yellowstone combines the power of an Apple 3.5 Disk Controller Card, a standard 5.25 inch (Disk II) controller card, the Apple Liron disk controller, and more, all in a single card. It supports virtually every type of Apple disk drive ever made, including standard 3.5 inch drives, 5.25 inch drives, smart drives like the Unidisk 3.5 and the BMOW Floppy Emu’s smartport hard disk, and even Macintosh 3.5 inch drives. Yes, pull the internal 3.5 inch drive from an old Mac and use it directly with your Apple II!

Yellowstone Features

  • Add 3.5 inch drive and smartport hard disk support to your Apple IIe or II/II+
  • Provide more disk connectivity options for your Apple IIgs
  • Bring Macintosh 3.5 and naked Apple 3.5 inch drive mechanisms to the Apple II
  • Drop-in replacement for an Apple Liron controller card (with optional DB-19F adapter)
  • Drop-in replacement for a standard 5.25 inch or Disk II controller card
  • Run two drives of different types on twin independent disk connectors
  • Disk II controller emulation mode for tricky copy-protected disks
  • Works with DOS 3.3, ProDOS, GS/OS, and more
  • User-upgradable firmware for future feature enhancements
  • 20-pin ribbon cable connectors or optional 19-pin D-SUB connectors

Yellowstone includes two independent disk drive connectors on the card, and supports drives with rectangular ribbon connectors as well as drives with D-shaped 19-pin DB-19 connectors. The standard Yellowstone card includes two rectangular connectors built-in on-board, and DB-19 female adapters are available separately if needed for use with 19-pin drives. There’s also a Yellowstone Everything Bundle that packs the Yellowstone card with two DB-19 female adapters into a single combined package.

The Yellowstone hardware is powered by an FPGA – a programmable logic device that replicates the behavior of the IWM chip and various support chips normally found on other disk controller cards. This gives Yellowstone unparalleled flexibility and control over every aspect of disk I/O, and the ability to change its behavior through firmware updates.

 
Limited Availability

If you’re interested in getting a Yellowstone card, don’t wait too long. At the risk of sounding like a late-night infomercial, “supplies won’t last”. The global chip shortage has created major problems for parts availability, and the FPGA chip at the heart of Yellowstone is no longer available anywhere, with estimated factory lead times of more than a year for new parts. If anyone has a lead on some Lattice LCMXO2-1200HC-4TG100 chips that could be delivered before 2023, let me know! The DB-19 female connectors have also become unobtanium. These aren’t manufactured anymore, and the only available sources are dusty new-old-stock from the 1990s. Once the supply of DB-19 females is gone, they’re gone and that’s the end. BMOW has enough Yellowstone hardware in stock to meet a few months’ worth of estimated sales, but beyond that the outlook is uncertain, and it may be 2023 or later before a resupply is possible. Lucky for you, there are plenty of them in stock right now.

 
Universal Drive Support

Need to attach a disk drive to your Apple II? Yellowstone has got you covered. Yellowstone is compatible with all the disk drives shown in this stack, plus many more. See the instruction manual for complete details.

 
Final Testing, One Last Moment of Panic

These Yellowstone boards were all tested by the contract manufacturer, using the automated Yellowstone test rig that I’ve described previously. But of course for this first batch, I’m going to spot test some boards at home before I put them in the store. So I grabbed a few from the shipping box, popped one into my Apple IIe, and… it didn’t work. After 10 minutes of troubleshooting I couldn’t figure out what was wrong, and I nearly had a heart attack imagining that the whole lot of Yellowstone boards had some systemic design error. Then I noticed the ribbon cable that I’d grabbed off my desk for testing:

Notice anything strange about this cable, like a giant hole in one of the conductors? Why, Steve, why?! I don’t remember why I originally made this hacked cable, but I curse myself now for leaving it on my desk where I’d accidentally pick it up six months later.

 
Available Now

If you own an Apple IIe, Apple IIgs, Apple II+, Apple II, or Apple II clone with expansion slots, Yellowstone is the disk controller card you’ve been waiting for! Check out the complete details in the Yellowstone instruction manual, or buy one now at the BMOW Store.

Read 23 comments and join the conversation 

Yellowstone Manufacturing is Go!

The i’s are dotted, the t’s are crossed, and Yellowstone manufacturing is underway! I want to say something satirical like “I never thought I’d live to see this day”, but truthfully this has been a long, long, loooooooong time in the making. General availability of Yellowstone is expected sometime around the middle of March. Development started in the summer of 2017, so you can do the math on total development time.

I’ve created a Yellowstone product page. This will be the official home for everything Yellowstone, including an overview of what it is and why you might want it, compatibility information, links to the instruction manual, firmware updates, and more.

Yellowstone is a universal disk controller card for Apple II computers. It supports nearly every type of Apple disk drive ever made, including standard 3.5 inch drives, 5.25 inch drives, smart drives like the Unidisk 3.5 and the BMOW Floppy Emu’s smartport hard disk, and even Macintosh 3.5 inch drives. Yellowstone combines the power of an Apple 3.5 Disk Controller Card, a standard 5.25 inch (Disk II) controller card, the Apple Liron controller, and more, all in a single card.

Need to attach a disk drive to your Apple II? Yellowstone should be your first choice, because it does virtually everything that every other Apple disk controller can do, plus more. The retail price for Yellowstone is planned somewhere in the mid-$100s range. This is a nice value, given that an Apple 3.5 Disk Controller Card costs $200+ and used Liron cards sell for $300+ on eBay, and Yellowstone can do much more than either of those cards.

 
Apple Disk Controller Card Comparison

Disk Controller Supports 3.5 inch drives Supports 5.25 inch drives Supports smart hard drives Supports Macintosh drives 20-pin ribbon connector DB-19 connector Number of connectors
Disk II
Controller Card
        2
Disk 5.25
Controller Card
        1
Apple 3.5 Disk Controller Card       1
Apple Liron Card         1
Yellowstone 1 2

[1] optional DB-19F connector

Since I know people are going to ask, I’m not taking pre-orders at this time, but you can sign up for the BMOW Newsletter if you want to be informed when Yellowstone is ready for sale. There should be plenty of Yellowstone cards to meet demand for at least a few months, so there’s no worry of an immediate sell-out. But in the medium to long term, the global semiconductor shortage and general meltdown of supply chains will be a problem. I couldn’t build additional Yellowstone cards right now, even if I wanted to, because the necessary parts just aren’t available anywhere. So if you want one of these, maybe don’t wait too long beyond March to grab one.

Want all the nitty-gritty usage details? You can read the Yellowstone instruction manual here. Now the waiting begins…

Read 23 comments and join the conversation 

Almost Manufacture-Ready

As 2021 draws to a close, Yellowstone is very nearly finished, with just a few details left to iron out. I recently tested a new v2.3 prototype with a couple of small PCB changes, and so far it’s looking good. The new PCB fixes an obscure problem with the Unidisk 5.25 and Disk IIc, where one of those specific drives connected as Drive 2 would interfere with another 5.25 inch drive at Drive 1. Initially I’d planned to write this off as a known compatibility issue, but I had second thoughts, and rushed through a new PCB revision.

Parts sourcing continues to be a major problem. The good news is that I was able to find more of the FPGAs that Yellowstone needs, but I had to go through a third-party dealer in Hong Kong and pay roughly twice the normal price. I have enough parts now to manufacture about 500 Yellowstone cards. Beyond that, the outlook is murky. I expect the semiconductor shortage to get worse before it starts getting better, and many parts are currently quoting lead times of a year or more. Given the current environment, Yellowstone should probably be considered a “limited edition” in 2022, with the possibility of some restock in 2023 or 2024.

I’ve received a couple of manufacturing quotes already from CircuitHub and MacroFab, two vendors with automated web-based quoting tools. These are helpful sanity checks and estimates, but they’re not yet fully baked quotes that I could move ahead with as-is. Optional features like beveled PCB edges and gold fingers require a custom quote. Programming and testing requirements are also difficult to factor in to automated quoting tools.

The preliminary information looks like beveled PCB edges and gold fingers would add about 30 percent (combined) to the total cost. I don’t know the cost breakdown between the two features. 30 percent is quite a lot, and I’m debating whether people will be willing to pay 30 percent more for a card with these features. The prototypes have square edges and ENIG fingers, and it doesn’t seem to have been an issue for the beta testers, so I’m leaning against including these extra features.

I talked to the support staff at Circuit Hub, and they were reluctant to discuss using my own-designed Yellowstone tester. They felt that the quality of their assembly process was so high, with automated visual and x-ray testing, that additional functional testing was unnecessary. And they stressed that if an assembly problem were ever found, I could send the board back to them for free rework. I admit to lacking experience here, but this makes me uneasy. It puts the onus on me to actually test each board before it’s sold, instead of having the vendor do it, but that’s exactly the type of work I want to outsource. And it assumes that free rework would make it acceptable to receive faulty boards. The cost of faulty boards is mostly lost time for testing and troubleshooting, not the cost of rework. By the time I’ve tested a board myself, confirmed that it fails, diagnosed the problem, and identified it as an assembly problem, I could probably just fix it in five minutes with a soldering iron. I’m not going to ship a board back for that. But I don’t want to be doing that kind of work in the first place. To be fair, they did say they would do functional testing if I really wanted it, but their process doesn’t seem to be designed for this, and they implied that it would be expensive.

I have the general impression that the automated quoting vendors like CircuitHub and MacroFab are geared more towards low volume prototyping, or simple projects involving common parts. I think they may not have the most competitive prices either, but we’ll see. For anything slightly non-standard, or for the most competitive pricing, I think it may still be necessary to go the traditional route of phoning or emailing a vendor, and having an actual person-to-person discussion about manufacturing options and requirements. I’ll be doing that soon.

One other interesting option is Seeed Studio’s Fusion PCB service. They have a semi-automated quoting tool, but the tool still needed some manual help to finish my quote, and even then it wasn’t entirely correct. However, the total quoted cost was less than half the cost from the two other vendors. They even agreed to include functional testing for free, but other options like beveled edges and gold fingers don’t seem to be available at all. The big downside is the two-way trans-Pacific shipping that would be needed. I would need to ship all the FPGAs to them for assembly, which they don’t really like doing, and which would create extra paperwork hassles and tax/tariff concerns. I would still prefer to work with a local vendor, or at least a vendor in the same country, if I can find one that’s competitive.

Most vendors are quoting lead times of about two months, so if I can get started with manufacturing soon, I could have product ready for sale by March. The lunar New Year holiday is fast approaching though, and that usually shuts down most Chinese businesses for a couple of weeks. That may delay the schedule, depending on what vendor and manufacturing process I ultimately choose. But barring any further unexpected problems, final Yellowstone cards should be available by March or April at the latest. Woohoo!

Read 6 comments and join the conversation 

Edge Connectors, ENIG Plating, and Galvanic Corrosion

Yellowstone is inching slowly towards the start of manufacturing. One question that’s arisen is the type of surface plating to use on the PCB. The default / cheap plating is HASL or Hot Air Solder Leveling, which is just a thin layer of solder, consisting mostly of tin. This is what BMOW’s other products use. But engineering wisdom says that for an edge connector, or any PCB surface that will send electrical signals across a mechanical contact surface, you should use ENIG plating. ENIG is Electroless Nickel Immersion Gold, and it’s a layer of nickel covered in a second layer of gold. It’s more expensive, but more durable.

So ENIG then? Well, maybe not. I recently learned about a problem called galvanic corrosion that occurs when two dissimilar metals are in contact for a long time. The peripheral card slots in an Apple II computer have tin fingers, I believe – at least they’re not obviously gold-colored. Does that mean an ENIG plated board inserted into an edge connector slot with tin fingers is doomed to contact corrosion and premature failure? A quick check of other Apple II peripheral cards in my office showed they all have gold-colored connectors. I’m uncertain if they’re ENIG or something else, but probably ENIG.

Read 9 comments and join the conversation 

Older Posts »