BMOW title
Floppy Emu banner

Archive for the 'Yellowstone' Category

The Yellowstone Tester

I once said I’d spend a maximum of one day on development of an automated tester for the Yellowstone disk controller. Haha, that was so cute. Today marks two months since I began work on the tester. Today was also the first try with the final (I hope) tester hardware. So far it seems to work, mostly.

Yellowstone is an FPGA-based disk controller for Apple II computers. It’s complex enough that fully testing each board is a non-trivial task. Manually testing a large batch of boards would be out of the question, so an automated tester is needed. The heart of the tester design is an STM32 “Blue Pill” board, combined with four Microchip port expander chips to reach a total of 80 I/Os. There are also a few analog sensors for measuring current and voltage, as well as a current switch IC that will disconnect the board being tested if it draws too much current.

 
Unexplained Current Changes

The ability to measure the supply current was one of the key features of the tester design. Unfortunately it doesn’t seem to work as well as I’d hoped. I was convinced that I needed to measure the combined supply current of the board being tested and the tester itself, in order to capture all possible paths where a short circuit might occur, and that works. So far, so good.

The odd thing is there are unexplained fluctuations in the measured current. With no Yellowstone board present, the current sensor reports about 26 mA used by the tester itself. But if I write some code that sits in a loop repeatedly measuring the current, but doing nothing else, sometimes the current briefly jumps up to 35 or 40 mA. This happens roughly once every second, but not consistently enough to make a reliable pattern. With a Yellowstone board present, the current is higher but similar current measurement fluctuations are still happening. At first I thought this was some deficiency in the STM32 ADC, but other analog measurements by the STM32 don’t have the same issue.

I’m not sure if these current changes are real, perhaps caused by some internal activity of the STM32 briefly increasing the supply current, or if the changes are somehow an artifact of how I’m measuring. Either way, the fluctuations are large enough to undermine most of what I’d planned to use the current measurements for. A measure of 70 mA +/- 25 mA isn’t accurate enough for much diagnosis beyond detecting a hard short-circuit.

 
Unresponsive ICs

A second problem I encountered is that the Microchip port expander ICs occasionally don’t respond to SPI commands. This often happens when I first turn on the tester after it’s been off for several minutes, but never happens when turning it briefly off and on, or resetting the tester while keeping the power on.

Surprisingly (or maybe it’s not surprising) there seems to be a relationship between the current fluctuations and the unresponsive port expanders. After the board has been off for several minutes, and is then turned on, I’ll very often see an immediate current fluctuation followed by unresponsive port expanders. I’ve added some code when the tester starts up that will repeatedly poll the port expanders until they respond as expected, and this appears to be working for now.

The tester PCB isn’t well designed for probing internal signals to see what’s wrong. Because I already built a breadboard prototype of the tester previously, and thought it was working, this new PCB was designed for small size rather than for debugging. It may require some fancy soldering and old-fashioned detective work to figure out what’s happening here.

Read 6 comments and join the conversation 

Apple II Pascal Booting Problems

Thanks to beta tester Bryan V., I’ve discovered that Apple II Pascal disks don’t boot normally with the prototype Yellowstone disk controller card. This includes the Pascal master disk as well as other disks built on Pascal, including Fortran, “Apple at Work”, and the game Wizardry. These disks begin to boot normally, and several tracks’ worth of data are loaded from the disk successfully, but then they halt with an error like “SYSTEM.PASCAL not found” or “Insert boot disk with SYSTEM.PASCAL”. These same disks work OK when Yellowstone emulates a plain Disk II controller card, so it looks like a ROM/software issue rather than hardware. For what it’s worth, a Laser UDC card also shows the same problem when attempting to boot these same Pascal disks.

The behavior is strange, because for every other disk I’ve seen with a ROM dependency on the Disk II controller card, it crashes or freezes during boot when it tries to use the missing Disk II controller card ROM. But the Pascal disks are failing with a nice error message about a missing file, making me think the problem is probably something else.

One clue: I found three Pascal-based disks that fail to boot even with a real Disk II controller card, on an enhanced //e: Pascal 1.1 Apple0 680-0003-01.dsk, Apple Pascal Basics and Integer & Applesoft II, and Pascal Profile Manager. I’m unsure if there’s a missing hardware requirement or if I’m doing something wrong. Even with a standard Disk II controller card these disks halt with the messages “No file SYSTEM.APPLE”, “Insert BASIC disk and press any key”, and “Insert boot disk with SYSTEM.PASCAL”, respectively.

I’m not very familiar with the low-level details of Apple II Pascal disks, or how Pascal does disk I/O. Maybe it expects a different set of API entry points in the disk controller ROM than ProDOS? Or maybe there’s something else unique about its disk I/O behavior?

The good news is that these Pascal-based disks do work OK when Yellowstone is configured in its Disk II controller emulation mode, but I’d like to understand why the normal Yellowstone mode doesn’t work.

Read 8 comments and join the conversation 

Yellowstone Tester Update

For the past couple of weeks I’ve been developing an automated tester for Yellowstone. My goal is to streamline the program and test process for Yellowstone beta cards, and eventually for the first production run. The ugly tangle of wires shown here may not look like much, but I’ve used it to successfully program a card with a blank FPGA, and to simulate 6502 bus cycles for reading and writing from the card’s memory. I was surprised to discover that those looping crisscrossed wires still work reliably even at speeds as high as 10 MHz. I was also able to measure the current consumption of a Yellowstone card at idle, plus the test hardware itself, which is about 80 mA. That’s lower than I’d guessed.

I think I’ve stretched this breadboard prototype about as far as it will go, even though many things remain incomplete. There’s still no testing of the disk drive interfaces, nor have I implemented any of the short-circuit detection that I discussed here previously. Those pieces will have to wait for the final version of the tester, when it’s built into a nice PCB instead of a snarl of loose wires. My next task is to take what I’ve built on the breadboard here, and convert it into a PCB, and add the missing elements for testing drive interfaces and short circuits. There’s still a lot of software to write as well. I’m guessing the whole process may take about four weeks, including the PCB manufacturing time.

Once that’s done, I can hand-assemble a few Yellowstone beta cards and use the finished tester to program and verify them. If all goes well, I may be able to wrap up Yellowstone development by Halloween.

Read 3 comments and join the conversation 

Short Circuit Current Experiments

A couple of weeks ago I shared some thoughts about an automated tester for Yellowstone boards, including how to test for short circuits. One of the questions that grew out of the resulting discussion was whether short circuits could only be detected by functional test failures (test results don’t match expected results) or if they could also be directly detected by measuring the supply current. A second question was how large the short circuit currents would typically be. I’ve recently done some tests to help answer these questions.

There are several different kinds of shorts that we need to think about:

  • shorts between power supplies, where short circuit current flows whenever the power is on
  • shorts between a signal and a power supply, where short circuit current only flows for certain signal values
  • shorts between two signals, where short circuit current only flows for certain pairs of signal values
  • shorts where the current source comes from the device being tested
  • shorts where the current source comes from the equipment that’s connected to the device

Most of Yellowstone’s external IOs pass through 74LVC245 buffers. All of the tester’s IOs will pass through MCP23S17 port expanders. So I intentionally short-circuited some samples of both chips, alone and then together, to see what would happen. Here’s what I found.

  • 74LVC245 with a 3.3V supply, and one logical high output short-circuited to ground: 70 mA short-circuit current
  • 74LVC245 with one logical low output short-circuited to 3.3V: 110 mA
  • MCP23S17 with a 5V supply, and one logical high output short-circuited to ground: 30 mA short-circuit current
  • MCP23S17 with one logical low output short-circuited to 5V: 50 mA
  • 74LVC245 logical high output short-circuited to MCP23S17 logical low output: 50 mA
  • 74LVC245 logical low output short-circuited to MCP23S17 logical high output: 30 mA

These currents are all large enough that it should be possible to reliably measure and detect them as deviations from the normal supply current (expected to be something in the range of 100 to 200 mA). So is this a good approach? Will it work? I’m going to try it and see, and if it’s successful then the tester will be that much more useful. If it’s not successful, I won’t have lost anything but some time and a few dollars worth of parts.

Why do this at all? Isn’t functional testing enough, with the assumption that any short circuit will cause a test failure somewhere? I say… maybe. In a perfect world, any short circuit would result in a functional test failure, but I don’t live in a perfect world. If I can do something to help detect shorts that functional tests missed, or that don’t result in test failures 100 percent of the time, I think that’s a good thing.

For how long do I need to measure the current? If the tester changes some IO values, waits a microsecond, and then measures the new supply current, is that enough? Or will capacitors on the voltage supplies smooth out the current from short circuits, so that microsecond-level measurements aren’t useful and I need to wait milliseconds or longer to get useful data? I’ll just have to try it and see.

If I measure the current, which current should I be measuring? I’m not quite sure. It might seem that I should measure the 5V supply current for the Yellowstone board (the device being tested). That would catch problems where there’s a short circuit between two elements on the Yellowstone board, whether they’re signals or supplies. It would also catch problems where a Yellowstone input signal was shorted to 3.3V or 5V, creating short-circuit currents whenever the connected equipment tries to drive a logical low to the input. But it wouldn’t catch problems where a Yellowstone input was shorted to ground.

In a case like that, short circuit current would flow whenever the connected equipment tries to drive a logical high value to the input. But since the current would be coming from the connected equipment, and not the Yellowstone board, measuring the Yellowstone supply current wouldn’t help. Maybe this is a rare enough case that I shouldn’t worry about measuring these currents, and I can just assume any such problems will be caught by a functional test.

Read 1 comment and join the conversation 

Yellowstone: Ready for Takeoff

After several days of extensive testing with the latest Yellowstone prototype, and several years of development work on this universal Apple II disk controller concept, I’m here to say that Yellowstone v2.2 is looking good. Looking very good. It’s the bee’s knees, the cat’s pajamas, the whole package; it’s a humdinger, a totally gnarly wave; it’s crackerjack, boffo, hella good, chezzar, d’shiznit, on point, and just plain bombdiggity. I’ve thrown a dumpster-load of assorted drives and disks at it, and it’s all working nicely. Finally everything has fallen into place, and I’m excited for what comes next. Here are some feature highlights:

  • Supports most Apple II and Macintosh disk drives, including 3.5 inch floppy, 5.25 inch floppy, Unidisk 3.5, and Smartport hard drives
  • Compatible with Apple II+, Apple IIe, and Apple IIgs
  • Maximum of 2 standard disk drives, or up to 5 drives when mixing smart and standard drives
  • 20-pin ribbon cable or 19-pin D-SUB connectors
  • Works in any slot
  • Disk II compatibility mode for tricky copy-protected disks
  • User-upgradeable for future feature enhancements

 

Yellowstone supports basically every disk drive ever made for the Apple II or Macintosh, whether external or internal. The only exception is the single-sided 400K 3.5 inch drive used in the original 1984 Macintosh. The list of drives includes:

  • Standard 3.5 inch: Apple 3.5 Drive A9M0106, Mac 800K External M0131, Apple SuperDrive / FDHD Drive G7287 (as 800K drive), internal red-label and black-label 800K drives liberated from old Macs, internal auto-inject or manual-inject Superdrives (as 800K drive), and probably also third-party 3.5 inch drives from Laser, Chinon, AMR, Applied Engineering, and others.
  • Standard 5.25 inch: Disk II A2M0003, Unidisk 5.25 A9M0104, AppleDisk 5.25 A9M0107, Disk IIc A2M4050, Duo Disk A9M0108
  • Smart drives: BMOW Floppy Emu Smartport Hard Disk emulation mode, Unidisk 3.5 A2M2053
  • Drive emulators: BMOW Floppy Emu, wDrive, etc.

With these latest test results, we’re almost at the point where other people can start to get their hands on Yellowstone cards. There are surely still some minor bugs, quirks, and annoyances yet to be discovered, and maybe some larger problems too. I need to get a few Yellowstone prototypes to beta testers, so they can try the cards with their equipment, and help find any remaining issues.

My priority now is to finish the automated tester that I’ve been developing. As I hand-assemble a few more prototype boards, I’ll test them in the automated tester, proving both the tester and the board at the same time. That means delivery of boards to beta testers will proceed more slowly than if I weren’t developing an automated tester, but I think this is necessary so that I can eventually scale up manufacturing for a general public release. I’m guessing there may be four to six weeks needed to finish off the automated tester and build it, but hopefully I can squeeze out at least a couple of hand-verified prototype boards much sooner than that.

The last piece of this puzzle will be securing a large enough supply of DB-19 female connectors, and designing a detachable Yellowstone adapter for them. I have a couple of DB-19F adapters that I’ve been using for testing, but DB-19F connectors are rare and hard to find. The ones I have now use a DB-19F with solder cups, but the type with PCB pins seems to be more common, if you can find them at all. I’ve stashed a modest supply of DB-19F connectors that’s enough for an initial Yellowstone production run, but the outlook is uncertain beyond that. I may have to commission 10000 new ones like I did with the DB-19 male.

These are exciting times! Thanks for following along this journey with me.

Read 9 comments and join the conversation 

Yellowstone 2.2 First Look

Yellowstone version 2.2 is up and running! If you don’t remember what’s changed in v2.2, well… that makes two of us. Luckily we can both go read this August 20 post for a reminder. Hand assembly took about two hours, and this was the first time any of the Yellowstone prototypes have worked straight away without needing any troubleshooting or fixes. The board has only been through one superficial test so far, confirming the ROM contents and booting a 5.25 inch disk, but I’m feeling optimistic it’s a winner.

After going through board v1.0, v2.0, v2.1, and v2.2, I’m sincerely hoping that this will be the final hardware version. The return of the DIP switch is the most visible change here – now the much-discussed -12V supply can be manually enabled or disabled. Leaving it enabled will almost always be OK, but there are a couple of polyfuses to protect the hardware just in case. There’s also a fix in v2.2 for a minor problem that prevented an Apple 3.5 Drive’s eject button from working if the drive was plugged into Yellowstone’s connector #2.

There are still some software issues to clean up, but (crossing my fingers) I think I can see the finish line now.

Just for fun, here’s a shot of the new Yellowstone board along with all of the disk drives I’ve amassed for testing. All of these will work with Yellowstone, and many others too.

And a bonus feature: here’s a peek at a 50 pin Apple peripheral card breakout board that I whipped up. It has all the signals labeled, because I don’t trust myself while debugging. With this breakout board, it’s possible to run a peripheral card on a breadboard instead of inside the Apple II. That’s exactly what I’m doing with the work-in-progress version of the Yellowstone tester shown here.

Read 6 comments and join the conversation 

Older Posts »